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Abstract: Let X,, X,, ,be i.i.d. random variables, which are uniformly distributed on [O,l]. Further let Z,(O) = [0, l] and let 
Z,(n) denote the k th largest interval generated by the points 0, X,, X,, . , X,_ 1, 1 (or equivalently, the interval corresponding 
to the kth largest spacing at the nth stage). This note studies the question for which classes of sequences k = k(n), will the 
interval Z,(,,(n) be hit (as.) only finitely often, as well as infinitely often. 
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1. Introduction 

There are several interesting problems concerning 
the division of an interval into subintervals. We 
just mention two in connection with what Pyke 
(1980) calls the uniform model (U-model) and the 
Kakutani model (K-model). 

In the U-model, points are thrown into (or 
chosen on) [O,l] independently of each other and 
all according to the uniform distribution function 
U on [O,l]. Since U is continuous, n points Xi, 
X 2,. . . , X, will split [O,l] a.s. into n + 1 intervals. 
The Glivenko-Cantelli result affirms that the em- 
pirical distribution function F, of X,, . . . , X, will 
tend a.s. to the uniform distribution function U on 
[WI. 

In what follows, we shall study the question 
whether in the U-model, certain intervals are hit 
infinitely often or not. Thus in the following, the 
random variables Xi, X,, . . . are all independent 
and uniformly distributed over [O,l]. We men- 
tioned, in passing, that the K-Model of Kakutani 
corresponds to choosing X, uniformly from the 
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largest interval generated by the preceding ob- 
servations. See Pyke (1980) and references con- 
tained therein. 

2. Results 

We first show that the sequence of the largest 
intervals will be hit infinitely often. Let Ii(n) 
denote the largest of the n intervals generated by 
Xi, X,, . . . , X,-i. Further, let i.o. be shorthand for 
‘infinitely often’. Then we have: 

Proposition 1. P( X, E Z,(n) i.0.) = 1. 

Proof. This is easy to see: Notice that the largest 
of these n intervals, which sum up to one, has 
always length greater than l/n. Therefore 

~P(X,Ez,(n) IX,, x,>...>x,-,)=~ 
n 

and the rest follows from the extended Borel- 
Cantelli lemma (see e.g. Breiman, 1968, Corollary 
5.29). 0 

It is interesting to see that the smallest interval, 
on the other hand, will almost surely be hit a 
finite numbers of times only, i.e. if Z,(n) denotes 
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the smallest of the n intervals generated by 
X ,,“‘> Xn_r, then: 

Proposition 2. P( X, E Z,(n) i.O.) = 0. 

Proof. Let Min(n) = 1 I,,(n) 1 denote the length of 
Z,,(n) and let 

p,(a)=P(Min(n)>cr), O<a<l. 

Notice that p,(a) = 0 for all QI E [l/n, 11. Further 
it is easy to see that 

p,,(a) =~,_,(a) eP(A, ]Min(n - 1) > a) (1) 

where A, is the event that the nth point X,, does 
not fall into the a-neighborhood of any of the 
points 0, X,, _ . . , X,_ Ir 1. Thus 

P(An JMin(n - 1) > IY) < 1 - n(~, 0 <(x < l/n. 

Using (1) we obtain by recurrence for all 0 < (Y < 

l/n, 

p,(a) < jj (1 - ka) < (1 - a)n(n+1)‘2 (2) 

where the right-hand side inequality follows easily 
by induction using the Bernoulli inequality. Now 
let a,=Ka where 1 < /3 < 2. Then we obtain 
from (2), 

p”(a,) < (1 - n-P)“2/* = (1 - /)nB,*-@/2 

- (L/e) n2-B/* 

so that with 0<2-p< 1, C,,p,(cy,)< cc. The 
general part of the standard Borel-Cantelli lemma 
implies therefore P(Min( n) > (Y, i.o.) = 0. Thus, 
for all n sufficiently large, P(X, E Z,(n) i.0.) = 0 
since Em n _ p < co. This completes the proof. 0 

We now ask: “How large should this interval 
be for it to be hit infinitely often?” For instance, 
would an interval corresponding to the ‘median 
spacing’ be hit infinitely often? To get some in- 
sight into this, we introduce more formal nota- 
tions and establish two general results. 

Let XI, X2,..., be i.i.d. random variables with 
uniform distribution on [O,l] and X,:, < . . . < 

Xn_,:n be the order statistics of X,,..., Xn-,, 
where n > 1. Define the uniform spacings by 

D,n=X,+,:n-Xi:n, i=O,l,..., n-l, 
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where X0:, =O’ and X,:,= 1. Let D,:, > **. 2 

D,,:, be the ordered uniform spacings and Z,(n) 
denote the kth largest interval with length D,:,. 

We are concerned with the probability that the 
next observation X, falls into Z,(n), where k = 

k(n) satisfies 1 G k(n) 6 n. We need the following 
result for which we provide a direct proof. See 
also Theorem 2.2 of Holst (1980). 

=(;I;)p’ (1 - t)“Pk( -In t) dt. 

Proof. Since X, is uniform on [O,l], clearly 

‘lx, Ezk(n)) 

=E[P(X,Ezk((n)(X,,...,X,-,)] 

= E[ Dk:n] = l*xg(x) dx 
0 

(3) 

where g(x) is the density of Dkzn, which is given 

by 

x(1 - (j+ k)x)“-*, (4) 

with (x) = max(x, 0). For a derivation of (4) see 
Rao and Sobel (1980) equation (3.6). Since 

/ 
‘x(1 - (j + k)x)“-* dx 

0 

= 
/ 

*‘(j+k:(l - (j + k)x)“-* dx 
0 

1 1 
= fi(n-1) (j+k)*’ 

from (3) and (4) it follows that 

‘cx, E ‘k(d) 

We now rewrite the sum on the right-hand side of 
(5) in a different form. Since 

(l-f).*=~~~(l)J(~Tk)~J, 
j=O 
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we have 

/ 
‘t”-‘(1 - t)-’ dt 

0 

zzz 

Hence for 0 < (9 ( 1, 

el s - 
/ / 0s 0 

tk-‘(1 - t)n-k dt ds 

= ~;,-l,J[~;k j&~,“‘i ds 

Let 8 + 1 - . Then by (5) and the above equalities 
we get 

‘cxn E ‘k(d) 

= (;‘-;)liltk-‘(l - t)n-k dt ds 

(1 - r,“-“l’; ds dt, 

which gives the required result because j,‘(l/s) ds 
=-lnt. 0 

Thus it follows from Lemma 1 and the Borel- 
Cantelli lemma that P( X, E 1,(n) i.o.) = 1 im- 
plies 

(6) 

and P( X, E I,(n) i.o.) = 0 if the series in (6) con- 
verges. The following two propositions cover most 
cases of k = k(n), for which (6) holds or fails, and 
generalize partly Propositions 1 and 2. 

Proposition 3. Zf lim sup, +,( k(n)/n) < 1, then 
E”P( X” E Z,(n)) = 00. 

Proof. By Taylor expansion of -In t around 1 we 
obtain 

-Int=(l--t)++(l-t)*+-.- 21-t 

for all t E [O,l]. It follows that 

tk-‘(1 - t)n-k (-In t) dt 

> (;I:)l,‘t’-‘(l -z)~-~+’ dt 

n-l (k-l)!(n-k+l)! 

i j 

n-k+1 

= k-l (n + l)! = (n+l)n. 

If lim sup, _no (k(n)/n) < 1, then there are N > 1 
and c < 1 such that k < cn for all n >, N. Conse- 
quently, 

m l-c 
>c n=2 TX = O”. 

Thus (7) implies that (6) holds, and so the pro- 
position follows. 0 

Proposition 4. If k > n - An P for some A >, 0 and 
0 <p < 1, then P( X, E I,(n) i.0.) = 0. 

Proof. It is easy to verify that 

t(-ln t)<l-t foralltE(O,l]. 

(For example, the two sides are equal at t = 1 and 
the derivative of t( - In t) is greater than that of 
1 - t on (0, 1)) Therefore for k > 2, 

nt2(; I :)l,'t'-I(1 - t)“-k( -In t) dt 

+;I;)l’tk-‘(ll,“-“” dt 

= j2 (;: I ; ) (k - 2)!b- k + I>! 

By the condition k > n - AnP, there are A4 > 0 
and N > 2 such that 

n-k+1 

(k- 1)n 

forall n>N. 
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Thus the last series in (8) converges since p < 1, 
and so does the first series in (8). Hence P( X,, E 
Ik( n) i.o.) = 0 follows from Lemma 1 and the 
Borel-Cantelli lemma. Cl 

Remark. k = n is a particular case which satisfies 
the condition of Proposition 4 with A = 0. Hence 
Proposition 4 is a generalization of Proposition 2. 
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